靜電放電是導致LED顯示屏失效的較大誘因
來源:重慶LED顯示屏 發布時間:2020年05月30日
LED無效的根本原因又可分成2個層面:一是LED本身質量不佳;二是操作方法不善。根據剖析大家梳理出LED失效模式和所述2個根本原因中間的對應關系。
上述我們談到很多LED的失效,通常在LED的常規檢驗測試中是無法發現的。除了在受到靜電放電、大電流(造成結溫過高)、外部強力等不當使用外,很多LED失效是在高溫、低溫、溫度快速變化或其他惡劣條件下,由于LED芯片、環氧樹脂、支架、內引線、固晶膠、PPA杯體等材料熱膨脹系數的差異,引發其內部應力的不同而產生的,因此,LED的質量檢測是一項十分復雜的工作。
再者,對于GaN基LED而言,靜電放電是其失效的較大誘因。靜電放電導致LED失效的機理非常復雜,設備、工具、器皿及人體均有可能帶有靜電并對其放電,這種靜電少則幾百伏,高則幾萬伏,放電時間在納秒級水平。我們在顯示屏生產、安裝、使用過程中出現的藍綠管失效,往往就是LED-PN結被靜電放電擊穿所至。
造成不均勻現象的根源主要有:LED各項性能參數的不一致;顯示屏在生產、安裝過程中組裝精度的不足;其他電子元器件的電參數一致性不夠;模塊、PCB設計的不規范等。
其中“LED各項性能參數的不一致”是主因。這些性能參數的不一致主要包括:光強不一致、光軸不一致、色坐標不一致、各基色光強分布曲線不一致以及衰減特性不一致等。
如何解決LED性能參數的不一致現象,目前業內主要有兩種技術途徑:一是通過對LED規格參數的進一步細分,提高LED各項性能的一致性;二是通過后續校正的方式來改善顯示屏均勻性。
后續校正也從早期的模組校正、模塊校正,發展到今天的逐點校正。校正技術則從單純的光強校正,發展到光強 色坐標校正。
但是,我們認為后續校正并不是萬全的。其中,光軸不一致、光強分布曲線不一致、衰減特性不一致、拼裝精度差以及設計的不規范等是無法通過后續校正來消除的,甚至這種后續校正會使光軸、衰減、拼裝精度方面的不一致更加惡化。
上述我們談到很多LED的失效,通常在LED的常規檢驗測試中是無法發現的。除了在受到靜電放電、大電流(造成結溫過高)、外部強力等不當使用外,很多LED失效是在高溫、低溫、溫度快速變化或其他惡劣條件下,由于LED芯片、環氧樹脂、支架、內引線、固晶膠、PPA杯體等材料熱膨脹系數的差異,引發其內部應力的不同而產生的,因此,LED的質量檢測是一項十分復雜的工作。
再者,對于GaN基LED而言,靜電放電是其失效的較大誘因。靜電放電導致LED失效的機理非常復雜,設備、工具、器皿及人體均有可能帶有靜電并對其放電,這種靜電少則幾百伏,高則幾萬伏,放電時間在納秒級水平。我們在顯示屏生產、安裝、使用過程中出現的藍綠管失效,往往就是LED-PN結被靜電放電擊穿所至。
造成不均勻現象的根源主要有:LED各項性能參數的不一致;顯示屏在生產、安裝過程中組裝精度的不足;其他電子元器件的電參數一致性不夠;模塊、PCB設計的不規范等。
其中“LED各項性能參數的不一致”是主因。這些性能參數的不一致主要包括:光強不一致、光軸不一致、色坐標不一致、各基色光強分布曲線不一致以及衰減特性不一致等。
如何解決LED性能參數的不一致現象,目前業內主要有兩種技術途徑:一是通過對LED規格參數的進一步細分,提高LED各項性能的一致性;二是通過后續校正的方式來改善顯示屏均勻性。
后續校正也從早期的模組校正、模塊校正,發展到今天的逐點校正。校正技術則從單純的光強校正,發展到光強 色坐標校正。
但是,我們認為后續校正并不是萬全的。其中,光軸不一致、光強分布曲線不一致、衰減特性不一致、拼裝精度差以及設計的不規范等是無法通過后續校正來消除的,甚至這種后續校正會使光軸、衰減、拼裝精度方面的不一致更加惡化。